Effects of disorder and internal dynamics on vortex wall propagation.
نویسندگان
چکیده
Experimental measurements of domain wall propagation are typically interpreted by comparison to reduced models that ignore both the effects of disorder and the internal dynamics of the domain wall structure. Using micromagnetic simulations, we study vortex wall propagation in magnetic nanowires induced by fields or currents in the presence of disorder. We show that the disorder leads to increases and decreases in the domain wall velocity depending on the conditions. These results can be understood in terms of an effective damping that increases as disorder increases. As a domain wall moves through disorder, internal degrees of freedom get excited, increasing the energy dissipation rate.
منابع مشابه
Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کاملInvestigation of the effects of using ribs on cyclone’s vortex finder on its performance
Introduction: Generally, geometrical parameters of the cyclone have a profound effect on determining its performance. The air outlet (Vortex Finder) as one of the cyclone’s components has a significant impact on the cyclone’s internal flow pattern, pressure drop and even dust removal efficiency. Material and Methods: Two different air outlets were designed in order to be easily installed and r...
متن کاملImpact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion
The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...
متن کاملNumerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds
Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...
متن کاملNumerical Investigation of Vortex Interaction in Pipe Flow
To discover the nonlinear characteristics of pipe flow, we simulated the flow as a sum of many vortex rings. As a first step, we investigated the nonlinear interaction among a maximum of three vortex rings. The pipe wall was replaced by many bound vortices. A free vortex ring moves right or left according to the radius, and that of a particular radius keeps the initial position. The energy of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 104 21 شماره
صفحات -
تاریخ انتشار 2010